Significance
Human-induced carbon emissions are causing global temperatures to rise and oceans to acidify. To understand how these rapid perturbations affect marine calcifying communities, we investigate a similar event in Earth’s geologic past, the Paleocene–Eocene thermal maximum (PETM). We introduce a method, isotopic filtering, to mitigate the time-averaging effects of sediment mixing on deep-sea microfossil records. Contrary to previous studies, we find that tropical planktic foraminifers in the central Pacific ocean were adversely affected by PETM conditions, as evidenced by a decrease in local diversity, extratropical migration, and impaired calcification. While these species survived the PETM through migration to cooler waters, it is unclear whether marine calcifiers can withstand the rapid changes our oceans are experiencing today.
Abstract
Ocean warming and acidification driven by anthropogenic carbon emissions pose an existential threat to marine calcifying communities. A similar perturbation to global carbon cycling and ocean chemistry occurred ∼56 Ma during the Paleocene–Eocene thermal maximum (PETM), but microfossil records of the marine biotic response are distorted by sediment mixing. Here, we use the carbon isotope excursion marking the PETM to distinguish planktic foraminifer shells calcified during the PETM from those calcified prior to the event and then isotopically filter anachronous specimens from the PETM microfossil assemblages. We find that nearly one-half of foraminifer shells in a deep-sea PETM record from the central Pacific (Ocean Drilling Program Site 865) are reworked contaminants. Contrary to previous interpretations, corrected assemblages reveal a transient but significant decrease in tropical planktic foraminifer diversity at this open-ocean site during the PETM. The decrease in local diversity was caused by extirpation of shallow- and deep-dwelling taxa as they underwent extratropical migrations in response to heat stress, with one prominent lineage showing signs of impaired calcification possibly due to ocean acidification. An absence of subbotinids in the corrected assemblages suggests that ocean deoxygenation may have rendered thermocline depths uninhabitable for some deeper-dwelling taxa. Latitudinal range shifts provided a rapid-response survival mechanism for tropical planktic foraminifers during the PETM, but the rapidity of ocean warming and acidification projected for the coming centuries will likely strain the adaptability of these resilient calcifiers.
Hupp B. N., Kelly D. C. & Williams J. W., 2022. Isotopic filtering reveals high sensitivity of planktic calcifiers to Paleocene–Eocene thermal maximum warming and acidification. PNAS 119(9): e2115561119. doi: 10.1073/pnas.2115561119. Article.