Effects of ocean acidification on the growth, photosynthetic performance, and domoic acid production of the diatom Pseudo-nitzschia australis from the California Current System

Pseudo-nitzschia australis (Frenguelli), a toxigenic pennate diatom capable of producing the neurotoxin domoic acid (DA), was examined in unialgal laboratory cultures to quantify its physiological response to ocean acidification (OA) – the decline in pH resulting from increasing partial pressure of CO2 (pCO2) in the oceans. Toxic blooms of P. australis are common in the coastal waters of eastern boundary upwelling systems (EBUS), including those of the California Current System (CCS) off the west coast of the United States where increased pCO2 and decreased seawater pH are well-known. This study determined the production of dissolved (dDA) and particulate DA (pDA), the rates of growth and nutrient (nitrate, silicate and phosphate) utilization, cellular elemental ratios of carbon and nitrogen, and the photosynthetic response to declining pH during the exponential and stationary growth phases of a strain of P. australis isolated during a massive toxic bloom that persisted for months along much of the U.S. west coast during 2015. Our controlled lab studies showed that DA production significantly increased as pCO2 increased, and total DA (pDA + dDA) normalized to cell density was 2.7 fold greater at pH 7.8 compared to pH 8.1 (control) during nutrient-limited stationary growth. However, exponential growth rates did not increase with declining pH, but remained constant until pH of 7.8 was reached, and then specific growth rates declined by ca. 30%. The toxin results demonstrate that despite minimal effects of OA observed during the nutrient-replete exponential growth phase, the enhancement of DA production, notably the 3-fold increase in particulate DA per cell, with declining pH from 8.1 to 7.8 during the nutrient-depleted stationary phase, supports the hypothesis that increasing pCO2 will result in greater toxic risk to coastal ecosystems from elevated ambient concentrations of particulate DA. The ecological consequences of decreasing silicate uptake rates and increasing cellular carbon quotas with declining pH may potentially ameliorate some negative impacts of OA on Pseudo-nitzschia growth in natural systems.

Wingert C. J. & Cochlan W. P., 2021. Effects of ocean acidification on the growth, photosynthetic performance, and domoic acid production of the diatom Pseudo-nitzschia australis from the California Current System. Harmful Algae 107: 102030. doi: 10.1016/j.hal.2021.102030. Article.


  • Reset

Subscribe

OA-ICC Highlights


%d bloggers like this: