Recognition that ocean acidification (OA) alters calcification rates in many tropical corals and photosynthetic processes in some has motivated research into coral’s carbon processing systems. Here, a multi-compartment coral model is used to assess inorganic carbon fluxes, accounting for carbon uptake, photosynthesis, transport across and between coral tissue and calcification. The increased complexity of this model is enabled by incorporating recent measurements of carbonic anhydrase activity and dissolved inorganic carbon (DIC) related photosynthetic parameters, allowing the model to respond to changes in external inorganic carbon chemistry. The model reproduced measured gross photosynthesis, calcification rates and calcifying fluid pH from Orbicella faveolata at current oceanic conditions. Model simulations representing OA conditions showed an increase in net photosynthesis and modest decreases in calcification which fall within trends seen in experimental data. Photosynthesis increased due to higher diffusive influx of CO2 into the oral tissue layers, increasing DIC where symbiotic algae reside. The model suggests that decreases in calcification result from increased fluxes of CO2 into the calcifying fluid from the aboral tissue layer and the bulk seawater, lowering its pH and reducing the aragonite saturation state. However, modeled pH drops in the calcifying fluid exceed those observed, pointing to the need for additional empirical constraints on DIC fluxes associated with calcification and coelenteron transport.
Tansik A. L., Hopkinson B. M. & Meile C., 2021. Inorganic carbon fluxes and perturbations by ocean acidification estimated using a data-constrained, process-based model of coral physiology. Marine Biology 168: 116. doi: 10.1007/s00227-021-03926-8. Article (subscription required).