Regulation of apoptosis by Pacific oyster Crassostrea gigas reveals acclimation strategy to CO2 driven acidification

Highlights

  • Apoptosis ratio increased and caspase-3/9 was activated under short-term CO2 exposure.
  • Opposite phenomenon was observed under long-term CO2 exposure.
  • CgBcl-XL mRNA level displayed significant up-regulation under long term CO2 exposure.
  • In vivo knock down of CgBcl-XL demonstrated its anti-apoptotic role.
  • The protein level of CgBcl-XL increased significantly under long-term CO2 exposure.

Abstract

Ocean acidification (OA) has posed formidable threats to marine calcifiers. In response to elevated CO2 levels, marine calcifiers have developed multiple strategies to survive, such as taking advantage of apoptosis, but its regulation mechanism remains largely unknown. Here, we used the Pacific oyster Crassostrea gigas as model to understand the apoptotic responses and regulation mechanism at short- (7 d) to long-term (56 d) CO2 exposure (pH = 7.50). The apoptosis of hemocytes was significantly induced after short-term treatment (7–21 d) but was suppressed under long-term CO2 exposure (42–56 d). Similarly, caspase-3 and caspase-9 were also increased post short-term exposure and fell back to normal levels after long-term exposure. These data together indicated diverse regulation mechanisms of apoptosis through different exposure periods. Through analysis of the B-cell lymphoma 2 (Bcl-2) family mitochondrial apoptosis regulators, we showed that only CgBcl-XL’s expression kept at high levels after 42- and 56-day CO2 exposure. CgBcl-XL shared sequence, and structural similarity with its mammalian counterpart, and knockdown of CgBcl-XL in hemocytes via RNA interference promoted apoptosis. The protein level of CgBcl-XL was significantly increased after long-term CO2 exposure (28–56 d), and its distribution in hemocytes became more concentrated and dense. Therefore, CgBcl-XL serves as an essential anti-apoptotic protein for tipping the balance of cell apoptosis, which may play a key role in survival under long-term CO2 exposure. These results reveal a potential adaptation strategy of oysters towards OA and the variable environment changes through the modulation of apoptosis.

Wang X., Li C., Jia Z., Xu T., Wang Y., Sun M., Han S., Wang X. & Qiu L., 2021. Regulation of apoptosis by Pacific oyster Crassostrea gigas reveals acclimation strategy to CO2 driven acidification. Ecotoxicology and Environmental Safety 217: 112235. doi: 10.1016/j.ecoenv.2021.112235. Article.

0 Responses to “Regulation of apoptosis by Pacific oyster Crassostrea gigas reveals acclimation strategy to CO2 driven acidification”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Follow AnneMarin on Twitter

Archives

Powered by FeedBurner

Blog Stats

  • 1,451,817 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book