Seabream larval physiology under ocean warming and acidification

The vulnerability of early fish stages represents a critical bottleneck for fish recruitment; therefore, it is essential to understand how climate change affects their physiology for more sustainable management of fisheries. Here, we investigated the effects of warming (OW; +4 °C) and acidification (OA; ΔpH = 0.5) on the heart and oxygen consumption rates, metabolic enzymatic machinery—namely citrate synthase (CS), lactate dehydrogenase (LDH), and ß-hydroxyacyl CoA dehydrogenase (HOAD), of seabream (Sparus aurata) larvae (fifteen days after hatch). Oxygen consumption and heart rates showed a significant increase with rising temperature, but decreased with pCO2. Results revealed a significant increase of LDH activity with OW and a significant decrease of the aerobic potential (CS and HOAD activity) of larvae with OA. In contrast, under OA, the activity levels of the enzyme LDH and the LDH:CS ratio indicated an enhancement of anaerobic pathways. Although such a short-term metabolic strategy may eventually sustain the basic costs of maintenance, it might not be adequate under the future chronic ocean conditions. Given that the potential for adaptation to new forthcoming conditions is yet experimentally unaccounted for this species, future research is essential to accurately predict the physiological performance of this commercially important species under future ocean conditions. View Full-Text

Pimentel M. S., Faleiro F., Machado J., Pousão-Ferreira P. & Rosa R., 2020. Seabream larval physiology under ocean warming and acidification. Fishes 5 (1): 1. doi: 10.3390/fishes5010001. Article.

0 Responses to “Seabream larval physiology under ocean warming and acidification”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,335,535 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book