Uncovering mechanisms of global ocean change effects on the Dungeness crab (Cancer magister) through metabolomics analysis

The Dungeness crab is an economically and ecologically important species distributed along the North American Pacific coast. To predict how Dungeness crab may physiologically respond to future global ocean change on a molecular level, we performed untargeted metabolomic approaches on individual Dungeness crab juveniles reared in treatments that mimicked current and projected future pH and dissolved oxygen conditions. We found 94 metabolites and 127 lipids responded in a condition-specific manner, with a greater number of known compounds more strongly responding to low oxygen than low pH exposure. Pathway analysis of these compounds revealed that juveniles may respond to low oxygen through evolutionarily conserved processes including downregulating glutathione biosynthesis and upregulating glycogen storage, and may respond to low pH by increasing ATP production. Most interestingly, we found that the response of juveniles to combined low pH and low oxygen exposure was most similar to the low oxygen exposure response, indicating low oxygen may drive the physiology of juvenile crabs more than pH. Our study elucidates metabolic dynamics that expand our overall understanding of how the species might respond to future ocean conditions and provides a comprehensive dataset that could be used in future ocean acidification response studies.

Trigg S. A., McElhany P., Maher M., Perez D., Busch D. S. & Nichols K. M., 2019. Uncovering mechanisms of global ocean change effects on the Dungeness crab (Cancer magister) through metabolomics analysis. Scientific Reports 9: 10717. doi: 10.1038/s41598-019-46947-6. Article.

0 Responses to “Uncovering mechanisms of global ocean change effects on the Dungeness crab (Cancer magister) through metabolomics analysis”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,279,041 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book