Pacific geoduck (Panopea generosa) resilience to natural pH variation

Pacific geoduck aquaculture is a growing industry, however little is known about how geoduck respond to varying environmental conditions, or how production might be impacted by low pH associated with ocean acidification. Ocean acidification research is increasingly incorporating multiple environmental drivers and natural pH variability into biological response studies for more complete understanding of the effects of projected ocean conditions. In this study, eelgrass habitats and environmental heterogeneity across four estuarine bays were leveraged to examine low pH effects on geoduck under different natural regimes, using proteomics to assess physiology. Juvenile geoduck were deployed in eelgrass and adjacent unvegetated habitats for 30 days while pH, temperature, dissolved oxygen, and salinity were monitored. Across the four bays pH was lower in unvegetated habitats compared to eelgrass habitats, however this did not impact geoduck growth, survival, or proteomic expression patterns. However, across all sites temperature and dissolved oxygen corresponded to growth and protein expression patterns. Specifically, three protein abundance levels (trifunctional-enzyme β-subunit, puromycin-sensitive aminopeptidase, and heat shock protein 90-⍺) and shell 16 growth positively correlated with dissolved oxygen variability and inversely correlated with mean 17 temperature. These results demonstrate that geoduck are resilient to low pH in a natural setting, 18 and other abiotic factors (i.e. temperature, dissolved oxygen variability) may have a greater 19 influence on geoduck physiology. In addition this study contributes to the understanding of how 20 eelgrass patches influences water chemistry.

Spencer L. H., Horwith M., Lowe A. T., Venkataraman Y. R., Timmins-Schiffman E., Nunn B. L. & Roberts S. B., 2018. Pacific geoduck (Panopea generosa) resilience to natural pH variation. bioRxiv. Article.

0 Responses to “Pacific geoduck (Panopea generosa) resilience to natural pH variation”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,135,586 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book