Effects of seawater pH on survival, growth, energy budget and oxidative stress parameters of juvenile turbot Scophthalmus maximus

This study aimed to elucidate the influence of environment pH on survival, growth, energy allocation and oxidative damage of juvenile Scophthalmus maximus (19.89±0.25 g). Six pH treatments (6.3±0.2、6.8±0.2、7.3±0.2、7.8±0.2、8.3±0.2、8.8±0.2) lasting for eight weeks were included. Measurements of survival (SR), feed conversion ratio (FCR), specific growth rate (SGR), weight gain rate (WGR), energy allocation, liver superoxide dismutase activity (SOD), catalase activity (CAT), and malondialdehyde concentration (MDA) were done. Results show that SR did not vary from pH 6.3 to 7.8, but reduced then significantly (P < 0.05); FCR raised remarkably (P < 0.05) while SGR and WGR decreased pronouncedly (P < 0.05). Most of the food energy was used in metabolism, followed by growth, feces loss and nitrogenous excretion. Energy deposited for growth showed a decreasing tendency when pH raised; while for metabolism showed a reverse trend. SOD showed insignificant difference from pH 6.3 to 7.8, but the activities then elevated obviously (P 0.05). CAT kept stable between pH 6.3 and 7.3, then sharply increased (P 0.05). Subsequent decrease in MDA was found from pH 6.3 to 8.3 then the concentration smoothly increased. Overall, our results indicate that a pH in the range of 6.8 to 7.8 is recommended in the growth environment in cultivation of juvenile turbot.

Shuang-Yao W., Jiang Z.-Q., Ming-Guang M., Shou-Kang M., Yanf S. & You-Zhen S., 2018. Effects of seawater pH on survival, growth, energy budget and oxidative stress parameters of juvenile turbot Scophthalmus maximus. Iranian Journal of Fisheries Sciences 17 (4): 675-689. Article.

0 Responses to “Effects of seawater pH on survival, growth, energy budget and oxidative stress parameters of juvenile turbot Scophthalmus maximus”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,184,331 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book