Ocean acidification modulates the incorporation of radio-labeled heavy metals in the larvae of the Mediterranean sea urchin Paracentrotus lividus

Highlights

• The radionuclide method allowed accurate tracing of the metal incorporation within this microscopic planktonic species.
• Metal incorporation in sea urchin larvae strongly correlates with the indirect delaying effect of acidification on larval size.
• Independently of the size effect, acidification directly affects the incorporation behavior of four metals (Mn, Ag, Se, Zn).
• The nature of the modulation is specific to each metallic element (see graphical abstract).
• Relationships between speciation, bioaccumulation and toxicity in the context of changing seawater pH requires more research.

Abstract

The marine organisms which inhabit the coastline are exposed to a number of anthropogenic pressures that may interact. For instance, the accumulation of toxic metals present in coastal waters is expected to be modified by ocean acidification through e.g. changes in physiological performance and/or elements availability. Changes in bioaccumulation due to lowering pH are likely to be differently affected depending on the nature (essential vs. non-essential) and speciation of each element. The Mediterranean is of high concern for possible cumulative effects due to strong human influences on the coastline.

The aim of this study was to determine the effect of ocean acidification (from pH 8.1 down to −1.0 pH units) on the incorporation kinetics of six trace metals (Mn, Co, Zn, Se, Ag, Cd, Cs) and one radionuclide (241Am) in the larvae of an economically- and ecologically-relevant sea urchin of the Mediterranean coastline: Paracentrotus lividus. The radiolabelled metals and radionuclides added in trace concentrations allowed precise tracing of their incorporation in larvae during the first 74 h of their development.

Independently of the expected indirect effect of pH on larval size/developmental rates, Paracentrotus lividus larvae exposed to decreasing pHs incorporated significantly more Mn and Ag and slightly less Cd. The incorporation of Co, Cs and 241Am was unchanged, and Zn and Se exhibited complex incorporation behaviors. Studies such as this are necessary prerequisites to the implementation of metal toxicity mitigation policies for the future ocean. We discuss possible reasons and mechanisms for the specific effect of pH on each metals.

Dorey N.,  Martin S., Oberhänsli F., Teyssié J.-L., Jeffree R. & Lacoue-Labarthe T., 2018. Ocean acidification modulates the incorporation of radio-labeled heavy metals in the larvae of the Mediterranean sea urchin Paracentrotus lividus. Journal of Environmental Radioactivity 190-191: 20-30. Article (subscription required).

0 Responses to “Ocean acidification modulates the incorporation of radio-labeled heavy metals in the larvae of the Mediterranean sea urchin Paracentrotus lividus”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,105,356 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book