Evaluating features of periphytic diatom communities as biomonitoring tools in fresh, brackish and marine waters


• Diversity of periphytic diatoms from freshwater, brackish water and marine sites from the same biogeographical region was assessed.
• Taxonomical parameters (life-forms, cell density, biovolume, Shannon index, species richness and % relative abundance) effectively differentiate impacted sites from less-impacted one.
• Lipid bodies and deformities in diatoms show tremendous potential to be used as a rapid early warning system for assessing the ecological health of fluvial ecosystem.


The aims of this study were to assess the biodiversity of periphytic diatom assemblages in fresh, brackish and marine waterbodies of Korea, and to assess the effect of environmental and anthropogenic factors on parameters such as the quantity and biovolume of lipid bodies and deformations of diatoms as early warning measures of anthropogenic impact. Diatom samples were collected from 31 sites (14 freshwater, 10 brackish and 7 marine), which included less impacted (upstream) and impacted (downstream) sites in each water type. Our results showed higher abundance and biodiversity of periphytic diatoms at the less impacted sites in terms of species richness, Shannon index, cell count and biovolume of the communities than at the impacted sites for freshwater and estuarine sites, but not for marine sites. 84 diatom species were noted in freshwater, 80 in brackish water and 40 in marine waters. In comparison to diatoms of the impacted sites, those of less impacted freshwater, brackish and marine sites had less lipid bodies (also less biovolume) and a lower percentage of teratological frustules, and showed more mobile forms in the community. Principal component analysis (PCA) also showed clear segregation of impacted from less impacted sites by the extent of the presence of lipid bodies (higher both in number and biovolume) and deformities in diatom frustules. Pearson correlation analysis revealed that lipid body induction and deformities were positively correlated with metals (Cd, Co, Cr, Cu, Fe, Pb and Zn) and nutrients (total phosphorus and total nitrogen), whereas they showed negative correlation with salinity, dissolved oxygen, suspended solutes and pH. Life-forms, lipid bodies and deformities in diatoms may be an effective biomonitoring tool for assessing biological effects of pollutants in non-marine aquatic ecosystems in Korea.

Pandey L. K., Sharma Y. C., Park J., Choi S., Lee H., Lyu J. & Han T, in press. Evaluating features of periphytic diatom communities as biomonitoring tools in fresh, brackish and marine waters. Aquatic Toxicology. Article (subscription required).

  • Reset


OA-ICC Highlights

%d bloggers like this: