Trichodesmium’s strategies to alleviate P-limitation in the future acidified oceans

Global warming may exacerbate inorganic nutrient limitation, including phosphorus (P), in the surface-waters of tropical oceans that are home to extensive blooms of the marine diazotrophic cyanobacterium, Trichodesmium. We examined the combined effects of P-limitation and pCO2, forecast under ocean acidification scenarios, on Trichodesmium erythraeum IMS101 cultures. We measured nitrogen acquisition, glutamine synthetase (GS) activity, C uptake rates, intracellular ATP concentration and the pool sizes of related key proteins. Here we present data supporting the idea that cellular energy reallocation enables the higher growth and N2 fixation rates detected in Trichodesmium cultured under high pCO2. This is reflected in altered protein abundance and metabolic pools. Also modified are particulate organic carbon and nitrogen production rates, enzymatic activities, and cellular ATP concentrations. We suggest that adjusting these cellular pathways to changing environmental conditions enables Trichodesmium to compensate for low P availability and to thrive in acidified oceans. Moreover, elevated pCO2 could provide Trichodesmium with a competitive dominance that would extend its niche, particularly in P-limited regions of the tropical and subtropical oceans.

Spungin D., Berman-Frank I. & Levitan O., in press. Trichodesmium’s strategies to alleviate P-limitation in the future acidified oceans. Environmental Microbiology. Article (subscription required).

0 Responses to “Trichodesmium’s strategies to alleviate P-limitation in the future acidified oceans”

  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Subscribe to the RSS feed

Follow AnneMarin on Twitter


Powered by FeedBurner

Blog Stats

  • 1,452,905 hits


Ocean acidification in the IPCC AR5 WG II

OUP book