Prolonged low pH reprograms carbon and nitrogen metabolism and micronutrient use in Symbiodinium kawagutii and reveals indicators for reef water quality management

Highlights

  • Low- pH stress suppresses S. kawagutii growth by ∼50%
  • Enhanced NPQ and reduced chlorophyll indicate increased photoprotection
  • Lipid pools increase as proteins and carbohydrates are diverted to fatty acids
  • Elevated C:N ratios and Fe/Mn loss reveal nutrient limitation under acid stress
  • Multi-omics uncover upregulated CA, antioxidant enzymes, and proton pumps

Abstract

Ocean acidification is a pervasive driver of coastal and reef water-quality change. We investigated how chronic low-pH exposure representative of extreme reef scenarios (pH 7.4-7.5) reshapes the physiology and metabolism of the coral symbiont Symbiodinium kawagutii. Integrating growth assays, photophysiology, ultrastructural imaging, biochemical profiling, transcriptomics, and metabolomics, we show that low pH suppresses growth and redirects resources from biosynthesis to stress mitigation. Non-photochemical quenching increased while chlorophyll content declined, indicating photoprotective energy reallocation. Ultrastructural deterioration coincided with losses of protein and carbohydrate pools, whereas fatty-acid stores expanded, evidencing a shift in carbon storage. Elemental and trace-metal measurements revealed higher cellular C:N and significant Fe/Mn depletion, indicating micronutrient constraints under acid stress. Multi-omics analyses identified coordinated upregulation of carbonic anhydrases, vacuolar H+-ATPases, and antioxidant defenses with downregulation of nitrogen and phosphorus assimilation, forming a plastic network that maintains pH and redox homeostasis at the expense of growth. These cellular trade-offs clarify how symbiont plasticity can buffer acidified conditions while altering the quality and quantity of photosynthate available to hosts. By linking mechanistic responses to potential monitoring indicators, this study provides actionable targets to anticipate and manage acidification impacts on reef water quality and to guide restoration strategies that prioritize acid-tolerant symbiont strains and relief of micronutrient stress.

Wen F-F., Ma Q.-L., Guo H.-R., Huang Y., Li D.-W., Yang W.-D., Li H.-Y. & Zou L.-G., 2026. Prolonged low pH reprograms carbon and nitrogen metabolism and micronutrient use in Symbiodinium kawagutii and reveals indicators for reef water quality management. Environmental Research: 123759. doi: 10.1016/j.envres.2026.123759. Article (restricted access).

0 Responses to “Prolonged low pH reprograms carbon and nitrogen metabolism and micronutrient use in Symbiodinium kawagutii and reveals indicators for reef water quality management”



  1. Leave a Comment

Leave a Reply




Subscribe

Search

  • Reset

OA-ICC Highlights

Resources


Discover more from Ocean Acidification

Subscribe now to keep reading and get access to the full archive.

Continue reading