Fluctuations in coastal water pH, driven by ocean acidification, can strongly influence photosynthetic marine species, including seaweeds. This study investigated the effects of seawater acidification on the growth, nutritional composition, sensory profile, and antioxidant activity of the green alga Caulerpa racemosa. Cultured under varying pH levels (8.25, 8.00, 7.75, and 7.50) adjusted using HCl, C. racemosa exhibited significant morphological and biochemical changes. Lower pH conditions caused bleaching and textural brittleness, with pH levels between 7.50 and 7.75 showing the most pronounced impacts. Conversely, pH 8.25 supported optimal growth, with superior morphometric performance (absolute growth of 138.30 ± 3.70 g; specific growth rate of 3.08 ± 0.04% day⁻1). Acidification decreased chlorophyll content but enhanced carotenoids, indicating reduced photosynthetic efficiency. Protein content declined under acidic conditions, while lipid and carbohydrate levels increased. Notably, antioxidant activity peaked under pH 7.50 (15.09 ± 0.04%; IC50 275.04 ± 0.85 ppm), suggesting an adaptive physiological response. Sensory evaluation revealed that C. racemosa cultured at pH 8.25 achieved the highest overall acceptability, supporting its potential for culinary and nutritional use. These findings highlight the capacity of C. racemosa to acclimate to acidified environments, providing insights into its adaptive mechanisms and applications in food, pharmaceuticals, and sustainable aquaculture.
Windarto S., Rachmawati D., Amalia R., Herawati V. E. & Elfitasari T., in press. Impact of seawater acidification on the growth, nutritional composition, sensory profile, and antioxidant activity of Caulerpa racemosa in laboratory culture. Journal of Applied Phycology. Article.



0 Responses to “Impact of seawater acidification on the growth, nutritional composition, sensory profile, and antioxidant activity of Caulerpa racemosa in laboratory culture”