Reviews and syntheses: carbon biogeochemistry of Indian estuaries

The goal of this review is to provide a comprehensive overview of the magnitude and drivers of carbon cycling dynamics in the major estuaries of India. Data from a total of 32 estuaries along the Bay of Bengal (BB) and the Arabian Sea (AS) were compiled from the literature and re-analysed based on changes in season (wet vs. dry) and marine end-members (e.g., BB vs. AS). The estuaries are generally undersaturated in dissolved oxygen relative to the atmosphere and strongly influenced by local and regional precipitation patterns. Speciation of the dissolved inorganic carbon (DIC) pool is dominated by bicarbonate and primarily variability in DIC is controlled by a combination of carbonate weathering, the degree of precipitation, the length of the estuaries, in situ respiration, and mixing. Carbonate dissolution had the largest influence on DIC during the wet season, while respiration was the primary control of DIC variability in the estuaries connected with BB during the dry season. Interestingly, the influence of anaerobic metabolism on DIC is observed in the oxygenated mangrove dominated estuaries, which we hypothesize is driven by porewater exchange in intertidal sediments. Dissolved organic carbon (DOC) generally behaves non-conservatively in the studied estuaries. The DOC-particulate organic carbon (POC) inter-conversion and DOC mineralization are evident in the BB during the dry season and AS estuaries, respectively. The wet season δ13CPOC shows dominance of freshwater algae, C3 plant material, as well as marine organic matter in POC. However, anthropogenic inputs are evident in some estuaries in eastern India during the dry season. POC respiration was identified in the AS; however, a link between POC and CH4 is identified throughout both the regions. pCO2 is controlled principally by respiration with freshwater discharge only playing a marginal important role in the BB. The AS estuaries act as a CO2 source to the atmosphere; however, the BB estuaries vary between a source and sink. POC together with methanotrophy and dam abundance appear to control CH4 concentrations, and all of the studied estuaries act as a CH4 source to the atmosphere. Additionally, anthropogenic inputs and groundwater exchange also show potential influences in some cases. The Indian estuaries contribute 2.62 % and 1.09 % to the global riverine DIC and DOC exports to the ocean, respectively. The total CO2 and CH4 fluxes from Indian estuaries are estimated as ~9718 Gg yr-1 and 3.27 Gg yr-1, which contributes ~0.67 % and ~0.12 %, respectively, to global estimates of estuarine greenhouse gas emissions. While a qualitative idea on the major factors controlling the carbon biogeochemistry in India is presented through this work, a more thorough investigation including rate quantification of the above-mentioned mechanisms is essential for precise accounting of the C budget of Indian estuaries.

Dutta M. K., Sreelash K., Padmalal D., Ward N. D. & Bianchi T. S., 2022. Reviews and syntheses: carbon biogeochemistry of Indian estuaries. Biogeosciences Discussions. Article.

  • Reset


OA-ICC Highlights

%d bloggers like this: