Experimental evolution reveals the synergistic genomic mechanisms of adaptation to ocean warming and acidification in a marine copepod

Metazoan adaptation to global change will rely on selection of standing genetic variation. Determining the extent to which this variation exists in natural populations, particularly for responses to simultaneous stressors, is therefore essential to make accurate predictions for persistence in future conditions. Here, we identify the genetic variation enabling the copepod Acartia tonsa to adapt to experimental ocean warming, acidification, and combined ocean warming and acidification (OWA) conditions over 25 generations. Replicate populations showed a strong and consistent polygenic response to each condition, targeting an array of adaptive mechanisms including cellular homeostasis, development, and stress response. We used a genome-wide covariance approach to partition the genomic changes into selection, drift, and lab adaptation and found that the majority of allele frequency change in warming (56%) and OWA (63%) was driven by selection but acidification was dominated by drift (66%). OWA and warming shared 37% of their response to selection but OWA and acidification shared just 1%. Accounting for lab adaptation was essential for not inflating a shared response to selection between all treatments. Finally, the mechanisms of adaptation in the multiple-stressor OWA conditions were not an additive product of warming and acidification, but rather a synergistic response where 47% of the allelic responses to selection were unique. These results are among the first to disentangle how the genomic targets of selection differ between single and multiple stressors and to demonstrate the complexity that non-additive multiple stressors will contribute to attempts to predict adaptive responses to complex environments.

Brennan R. S., deMayo J. A., Dam H. G., Finiguerra M., Baumann H., Buffalo V. & Pespeni M. H., 2021. Experimental evolution reveals the synergistic genomic mechanisms of adaptation to ocean warming and acidification in a marine copepod. bioRxiv. Article.


  • Reset

Subscribe

OA-ICC Highlights


%d bloggers like this: