Exploring coastal acidification and oyster restoration activities on the United States Atlantic coast

Executive Summary

The global ocean mediates the effect of climate change and anthropogenic carbon emissions by absorbing atmospheric carbon dioxide (Ellis et al., 2017). The ocean’s absorption of carbon dioxide results in a change in ocean chemistry and decline in seawater pH known as ocean acidification (Kapsenberg and Cyronak, 2018). Changes in ocean chemistry and pH may also be driven by primary production activity, upwelling, and river runoff into marine environments (Richards et al., 2014). Ocean acidification has the potential to adversely affect numerous marine organisms (Kapsenberg and Cyronak, 2018), however, it can be especially problematic for calcifying shellfish species (Swezey et al., 2020) like the Eastern Oyster and larval or juvenile stage organisms (Mangi et al., 2018). Temperature, salinity, dissolved oxygen levels, and acidification impact the health and longevity of oysters and oyster reefs. Oyster reefs offer numerous ecosystem services. These reefs provide habitat for benthic invertebrates, seabirds and fish that rely on reefs for feeding, nursery, and breeding grounds (Burrows et al., 2005). The Eastern Oyster (Crassostrea virginica) is a native oyster species of the U.S. Atlantic Coast. Although oysters reefs support coastal livelihoods and offer numerous ecosystem services, many reefs have been degraded by anthropogenic activities (Burrows et al., 2005). Pollution, over-harvest, and an increase in loading of suspended sediments are key threats to oyster reef health (Burrows et al., 2005). Oyster reef restoration projects focus on returning reefs to their natural state. Given the role of oysters as ecosystem engineers, and the many benefits that may be derived from healthy oyster reefs, restoration projects are a priority for communities throughout the U.S. Atlantic Coast.

Cooley et al. 2016 recommends several effective community actions that may be taken to help address ocean acidification today. This project focuses on two non-legislative actions discussed by Cooley et al. 2016. These are public education related to coastal acidification and resilience management through oyster reef restoration projects. The purpose of this project is to support coastal resource-reliant communities on the U.S. Atlantic Coast in preparing for the potential future impacts of ocean acidification on C. virginica. The project examines trends in the oyster reef restoration projects presently underway at the state and local level along the U.S. Atlantic Coast, and it considers how coastal acidification may affect the longevity of the region’s oyster reefs. Finally, the project considers the future research and management considerations needed to adequately protect oyster reefs under changing climatic conditions.

Myles L., 2021. Exploring coastal acidification and oyster restoration activities on the United States Atlantic coast. MSc thesis, Nicholas School of the Environment of Duke University, 33 p. Thesis.


  • Reset

Subscribe

OA-ICC Highlights


%d bloggers like this: