Alkalinity cycling and carbonate chemistry decoupling in seagrass mystify processes of acidification mitigation

The adverse conditions of acidification on sensitive marine organisms has led to the investigation of bioremediation methods as a way to abate local acidification. This phytoremediation, by macrophytes, is expected to reduce the severity of acidification in nearshore habitats on short timescales. Characterizing the efficacy of phytoremediation can be challenging as residence time, tidal mixing, freshwater input, and a limited capacity to fully constrain the carbonate system can lead to erroneous conclusions. Here, we present in situ observations of carbonate chemistry relationships to seagrass habitats by comparing dense (DG), patchy (PG), and no grass (NG) Zostera marina pools in the high intertidal experiencing intermittent flooding. High-frequency measurements of pH, alkalinity (TA), and total-CO2 elucidate extreme diel cyclicity in all parameters. The DG pool displayed frequent decoupling between pH and aragonite saturation state (Ω arg ) suggesting pH-based inferences of acidification remediation by seagrass can be misinterpreted as pH and Ω arg can be independent stressors for some bivalves. Estimates show the DG pool had an integrated ΔTA of 550 μmol kg -1 over a 12 h period, which is ~60 % > the PG and NG pools. We conclude habitats with mixed photosynthesizes (i.e., PG pool) result in less decoupling between pH and Ωarg.

Miller C. A. & Kelley A. L., in review. Alkalinity cycling and carbonate chemistry decoupling in seagrass mystify processes of acidification mitigation. Research Square. Article.

0 Responses to “Alkalinity cycling and carbonate chemistry decoupling in seagrass mystify processes of acidification mitigation”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Follow AnneMarin on Twitter

Archives

Powered by FeedBurner

Blog Stats

  • 1,451,820 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book