Vulnerability and resilience of tropical coastal ecosystems to ocean acidification

Ocean acidification leads to a wide variety of responses from tropical coastal ecosystems. Coral reefs are most vulnerable with most coral species exhibiting declining calcification rates with decreasing pH and carbonate chemistry parameters. Some corals show resilience to acidification likely due to active physiological regulation of their calcifying fluid. Other calcifying organisms, such as some foraminifera and coccolithophores, exhibit negative responses, whereas some symbiont-bearing calcifiers respond positively, to increasing acidification. Seagrasses and brown macroalgae thrive under acidified conditions, with increasing rates of primary productivity. Some tropical coastal fish species are resilient, and in some species, respond positively, to acidification. Some tropical species show complex, nonlinear responses to declining pH and carbonate chemistry. Factors that influence the ability of a species to adapt to and/or resist acidification include food supply, nutrient availability, temperature, diet, interactions with symbionts and other organisms and species and community diversity. Interactive effects of ocean acidification with other climate change parameters, such as elevated temperature, play an important but poorly understood role in determining the resilience and vulnerability of tropical coastal species, communities and ecosystems. Some short-lived species can undergo acclimation and/or adaptive evolution to increase fitness in the face of acidification. Biota living in tropical estuarine and nearshore environments, such as mangroves, seagrasses and intertidal and subtidal inshore benthos, are unlikely to be significantly affected by future acidification as such environments exhibit very wide variations in water and sediment pH and carbonate chemistry. Nearly all tropical coastal environments exhibit significant CO2 efflux to the atmosphere due to pCO2 and [CO32-] oversaturation caused by high rates of respiration and factors linked to fluvial discharge. Except for coral reefs, most calcifying organisms and upwelling regions, tropical estuarine and inshore ecosystems unaffected by eutrophication and other anthropogenic problems should be resilient to future acidification.

Alongi D. M., 2020. Vulnerability and resilience of tropical coastal ecosystems to ocean acidification. Examines in Marine Biology & Oceanography 3 (2): EIMBO.000562.2020. doi: : 10.31031/EIMBO.2020.03.000562. Article.

0 Responses to “Vulnerability and resilience of tropical coastal ecosystems to ocean acidification”

  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Subscribe to the RSS feed

Follow AnneMarin on Twitter


Powered by FeedBurner

Blog Stats

  • 1,450,965 hits


Ocean acidification in the IPCC AR5 WG II

OUP book