Decreased motility of flagellated microalgae long-term acclimated to CO2-induced acidified waters

Motility plays a critical role in algal survival and reproduction, with implications for aquatic ecosystem stability. However, the effect of elevated CO2 on marine, brackish and freshwater algal motility is unclear. Here we show, using laboratory microscale and field mesoscale experiments, that three typical phytoplankton species had decreased motility with increased CO2. Polar marine Microglena sp., euryhaline Dunaliella salina and freshwater Chlamydomonas reinhardtii were grown under different CO2 concentrations for 5 years. Long-term acclimated Microglena sp. showed substantially decreased photo-responses in all treatments, with a photophobic reaction affecting intracellular calcium concentration. Genes regulating flagellar movement were significantly downregulated (P < 0.05), alongside a significant increase in gene expression for flagellar shedding (P < 0.05). D. salina and C. reinhardtii showed similar results, suggesting that motility changes are common across flagellated species. As the flagella structure and bending mechanism are conserved from unicellular organisms to vertebrates, these results suggest that increasing surface water CO2 concentrations may affect flagellated cells from algae to fish.

Wang, Y., Fan, X., Gao, G., Beardall J., Inaba K., Hall-Spencer J. M., Xu D., Zhang X., Han W., McMinn A. & Ye N., in press. Decreased motility of flagellated microalgae long-term acclimated to CO2-induced acidified waters. Nature Climate Change. Article.

0 Responses to “Decreased motility of flagellated microalgae long-term acclimated to CO2-induced acidified waters”



  1. Leave a Comment

Leave a Reply




				
  • Search

  • Categories

  • Tags

  • Post Date

Subscribe to the RSS feed

Follow AnneMarin on Twitter

Blog Stats

  • 1,407,993 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book


%d bloggers like this: