Effects of an aquaculture pesticide (diflubenzuron) on non-target shrimp populations: extrapolation from laboratory experiments to the risk of population decline

Highlights

• Diflubenzuron (DFB) in salmon lice treatment can kill non-target crustaceans.

• We developed an age-structured model to assess effects of DFB on shrimp populations.

• The model predicts decline in shrimp abundance by 8%–99%, depending on DFB scenario.

• Environmental fluctuations contribute to the risk of shrimp population decline.

• Future environmental warming and ocean acidification may further impact populations.

Abstract

Marine aquaculture production has lately experienced high economic growth, but also concerns related to production and environmental contamination. For the Atlantic salmon aquaculture industry, the ectoparasitic crustacean salmon louse (Lepeophtheirus salmonis) has become a major problem. A common method to control populations of salmon lice within farm cages is treatment by various pharmaceuticals. One of the pesticides used in medicated feed for salmon is diflubenzuron (DFB), which acts as a chitin synthesis inhibitor and thereby interferes with the moulting stages during the development of this crustacean. However, DFB from fish feed may also affect non-target crustaceans such as the northern shrimp (Pandalus borealis), which is an economically and ecologically important species. Nevertheless, the actual risk posed by this chemical to shrimp populations in nature is largely unknown. Laboratory experiments have demonstrated that both larval and adult shrimp exposed to DFB through medicated fish feed have reduced survival compared to control. Moreover, the effects of DFB exposure are more severe under conditions of higher temperature and reduced pH (ocean acidification), which can be expected in a future environment. The aim of this study is to make the individual-level information from laboratory studies more relevant for risk assessment at the population level. We have developed a density-dependent age-structured population model representing a northern shrimp population located in a hypothetical Norwegian fjord containing a fish farm, under both ambient and future environments. Our model is based on thorough documentation of shrimp biology and toxicological effects from the laboratory experiments. Nevertheless, extrapolating the reported individual-level effects of DFB to the population level poses several challenges. Relevant information on shrimp populations in Norwegian fjords is sparse (such as abundances, survival and reproductive rates, and density-dependent processes). The degree of exposure to DFB at different distances from aquaculture farms is also uncertain. We have therefore developed a set of model scenarios representing different DFB application schemes and different degrees of exposure for the shrimp populations. The model predicts effects of DFB exposure on population-level endpoints such as long-term abundance, age structure and the probability of population decline below threshold abundances. These model predictions demonstrate how the risk of DFB to shrimp populations can be enhanced by factors such as the timing (season) of DFB applications, the percentage of the population affected, future environmental conditions and environmental stochasticity.

Moe S. J., Hjermann D. Ø., Ravagnan E. & Bechmann R. K., 2019. Effects of an aquaculture pesticide (diflubenzuron) on non-target shrimp populations: extrapolation from laboratory experiments to the risk of population decline. Ecological Modelling 413: 108833. doi: 10.1016/j.ecolmodel.2019.108833. Article.

0 Responses to “Effects of an aquaculture pesticide (diflubenzuron) on non-target shrimp populations: extrapolation from laboratory experiments to the risk of population decline”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,378,687 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book