Reduced continental weathering and marine calcification linked to late Neogene decline in atmospheric CO2

The globally averaged calcite compensation depth has deepened by several hundred metres in the past 15 Myr. This deepening has previously been interpreted to reflect increased alkalinity supply to the ocean driven by enhanced continental weathering due to the Himalayan orogeny during the late Neogene period. Here we examine mass accumulation rates of the main marine calcifying groups and show that global accumulation of pelagic carbonates has decreased from the late Miocene epoch to the late Pleistocene epoch even though CaCO3 preservation has improved, suggesting a decrease in weathering alkalinity input to the ocean, thus opposing expectations from the Himalayan uplift hypothesis. Instead, changes in relative contributions of coccoliths and planktonic foraminifera to the pelagic carbonates in relative shallow sites, where dissolution has not taken its toll, suggest that coccolith production in the euphotic zone decreased concomitantly with the reduction in weathering alkalinity inputs as registered by the decline in pelagic carbonate accumulation. Our work highlights a mechanism whereby, in addition to deep-sea dissolution, changes in marine calcification acted to modulate carbonate compensation in response to reduced weathering linked to the late Neogene cooling and decline in atmospheric partial pressure of carbon dioxide.

Si W. & Rosenthal Y., 2019. Reduced continental weathering and marine calcification linked to late Neogene decline in atmospheric CO2. Nature Geoscience 12: 833–838. Article (subscription required).

0 Responses to “Reduced continental weathering and marine calcification linked to late Neogene decline in atmospheric CO2”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,291,044 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book