Ocean acidification reduces net calcification and wound healing in the tropical crustose coralline alga, Porolithon onkodes (Corallinales, Rhodophyta)

Highlights

  • Wounding did not affect net calcification or tissue mortality in Porolithon onkodes.
  • In contrast, elevated pCO2 reduced net calcification and living tissue.
  • Elevated pCO2 also reduced tissue regeneration within wounds.
  • Reduced wound healing under elevated pCO2 could affect the ecology of coralline algae.

Abstract

Reef dwelling algae employ a variety of physical and chemical defenses against herbivory, and the response to wounding is extremely important in algal communities. Wound healing mechanisms in crustose coralline algae (CCA) are related to skeletal growth and net calcification rate. Ocean acidification (OA) is known to affect rates of net calcification in a number of calcifying organisms, including CCA. Reduced rates of net calcification in CCA are likely to alter wound healing, and thus affect the consequences of herbivore-CCA interactions on coral reefs. The response of the tropical CCA Porolithon onkodes to OA and artificial wounding was quantified in a 51-day laboratory experiment. Eight artificially wounded (cut to a mean depth of 182 μm) and eight non-wounded samples of P. onkodes were randomly placed into each of four treatments (n = 64 samples total). Each treatment was maintained at a different pCO2 level representative of either ambient conditions or end-of-the-century, predicted conditions (IPCC, 2014); 429.31 ± 20.84 (ambient), 636.54 ± 27.29 (RCP4.5), 827.33 ± 38.51 (RCP6.0), and 1179.39 ± 88.85 μatm (RCP8.5; mean ± standard error). Elevated pCO2 significantly reduced rates of net calcification in both wounded and non-wounded samples of P. onkodes (slopes = −6.4 × 10−4 and −5.5 × 10−4 mg cm−2 d−1 per μatm pCO2, respectively over 51 days). There also was a significant reduction in the rate of vertical regeneration of thallus tissue within the wounds as pCO2 increased (slope = −1.5 × 10−3 μm d−1 per μatm pCO2 over 51 days). This study provides evidence that elevated pCO2 could reduce the ability of this important alga to recover from wounding. Because wounding by herbivores plays an important role in determining CCA community structure, we propose reduced wound healing as a mechanism by which OA might affect the structure and functional roles of CCA communities on coral reefs.

Manning, J. C., Carpenter R. C. & Miranda E. A., 2019. Ocean acidification reduces net calcification and wound healing in the tropical crustose coralline alga, Porolithon onkodes (Corallinales, Rhodophyta). Journal of Experimental Marine Biology and Ecology 520: 151225. doi: 10.1016/j.jembe.2019.151225. Article (subscription required).

0 Responses to “Ocean acidification reduces net calcification and wound healing in the tropical crustose coralline alga, Porolithon onkodes (Corallinales, Rhodophyta)”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,291,044 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book