Co-culture in marine farms: macroalgae can act as chemical refuge for shell-forming molluscs under an ocean acidification scenario

With ongoing climate change, aquaculture faces environmental challenges similar to those of natural ecosystems. These include increasing stress for calcifying species, e.g. macroalgae and shellfish. In this context, ocean acidification (OA) has the potential to affect important socioeconomic activities, including shellfish aquaculture, due to changes in the seawater carbonate system. However, coastal environments are characterised by strong diurnal pH fluctuations associated with the metabolic activity of macroalgae; that is, photosynthesis and respiration. This suggests that calcifying organisms that inhabit these ecosystems are adapted to this fluctuating pH environment. Macrophyte-dominated environments may have the potential to act as an OA buffering system in the form of a photosynthetic footprint, by reducing excess of CO2 and increasing the seawater pH and Ωarg. This can support calcification and other threatened physiological processes of calcifying organisms under a reduced pH environment. Because this footprint is supportive beyond the macroalgal canopy spatial area, this chemical refuge mechanism can be applied to support shellfish aquaculture, e.g. mussels. However, this approach should be tested in commercial shellfish farms to determine critical aspects of implementation. This includes critical factors such as target species and productivity rates. The degree of OA buffering capacity caused by the metabolic activity of macroalgae might depend on community structure and hydrodynamic conditions, creating site-specific responses. This concept might aid the development of future adaptive strategies, supporting marine ecological planning for the mussel aquaculture industry in Chile.

Fernández P. A., Leal P. P. & Henríquez L. A., 2019. Co-culture in marine farms: macroalgae can act as chemical refuge for shell-forming molluscs under an ocean acidification scenario. Phycologia 58: 542-551. Article (subscription required).

0 Responses to “Co-culture in marine farms: macroalgae can act as chemical refuge for shell-forming molluscs under an ocean acidification scenario”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,291,046 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book