Ocean acidification can interact with ontogeny to determine the trace element composition of bivalve shell

We sought to determine how pCO2 will affect the incorporation of trace elements into bivalve shell. This was to validate that under high pCO2 conditions reconstruction of animal movements is still viable; and to investigate potential trace element proxies for ocean carbonate chemistry. Here, we examined shell of the bivalve Perna canaliculus formed under current CO2 (pCO2 = 400 μatm) conditions and those predicted to exist in 2100 (pCO2 = 1050 μatm). Seventeen trace element:calcium ratios were examined at two locations within shells. Elements that are typically most useful in determining connectivity patterns (e.g., Sr, Mn, Ba, Mg, B) were not affected by pCO2 in shell produced early in individual’s lives. This suggests that the effects of ocean acidification on dispersal signatures may be dampened. However, cobalt, nickel, and titanium levels were influenced by pCO2 consistently across shells suggesting their role as potential indicators of CO2 level.

Norrie C. R., Dunphy  B. J., Ragg N. L. C. & Lundquist C. J., in press. Ocean acidification can interact with ontogeny to determine the trace element composition of bivalve shell. Limnology and Oceanography Letters. Article.

0 Responses to “Ocean acidification can interact with ontogeny to determine the trace element composition of bivalve shell”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,122,842 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book