Quantitative interpretation of vertical profiles of calcium and pH in the coral coelenteron

Highlights

• In this study, pH and Ca2+ microsensors were reported together with a theoretical analysis by a reaction-diffusion model to study the dynamics of pH and Ca2+ in the coelenteron of the reef corals Turbinaria reniformis and Acropora millepora.
• Our study showed that Ca2+ concentrations linearly decreased from the mouth to the base of the coelenteron due to calcification.
• The estimated H+ gradient between the coelenteron cavity and the calcification site was >10 times higher than previously predicted between outside seawater and the calcification site.
• Our numerical simulation reveals that OA reduces the internal pH at the base of the coelenteron, and this pH decline is greatly amplified in corals with a deeper coelenteron.

Abstract

Scleratinian corals (hard corals) and their symbiotic algae are the ecological engineers of biodiverse and geological important coral reef habitats. The complex, linked physiological processes that enable the holobiont (coral + algae) to calcify and generate reef structures are consequently of great interest. However, the mechanism of calcification is difficult to study for several reasons including the small spatial scales of the processes and the close coupling between the symbiont and host. In this study, we explore the utility of pH and Ca2+ microelectrodes for constraining the rates and spatial distribution of photosynthesis, respiration, and calcification. The work focuses on vertical profiles of pH and Ca2+ through the coelenteron cavity, a semi-isolated compartment of modified seawater amenable to quantitative interpretation. In two studied species, Turbinaria reniformis and Acropora millepora, Ca2+ concentrations decreased in a roughly linear manner from the mouth to the base of the coelenteron, indicating the primary physiological process affecting Ca2+ concentration is removal for calcification below the coelenteron. In contrast, the H+ concentration remained relatively constant over much of the coelenteron cavity before it increased sharply toward the base of the coelenteron, indicative of proton-pumping from the calcification fluid below. The estimated H+ gradient between the coelenteron cavity and the calcification site was >10 times higher than previously predicted. Consequently, the energy required to export protons from the calcifying fluid was estimated to be ~3 times higher than previously calculated. A one-dimensional reaction-diffusion model was used to interpret the pH profile considering the effects of photosynthesis, respiration, and calcification. This model provided a good fit to the observed pH profile and helped to constrain the rates and spatial distribution of these processes. Our modeling results also suggested that adult corals with deeper polyps may be more sensitive to ocean acidification (OA) because of enhanced difficulty to transport H+ out of the coelenteron and into the surrounding seawater.

Yuan X., Cai W.-J., Meile C., Hopkinson B. M., Ding Q., Schoepf V., Warner M. E., Hoadley K. D., Chen B., Liu S., Huang H., Ye Y. & Grottoli A. G., in press. Quantitative interpretation of vertical profiles of calcium and pH in the coral coelenteron. Marine Chemistry. Article (subscription required).

0 Responses to “Quantitative interpretation of vertical profiles of calcium and pH in the coral coelenteron”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,128,358 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book