Ecophysiological response of Jania rubens (Corallinaceae) to ocean acidification

Coralline algae (Rhodophyta) play a key role in promoting settlement of other benthic organisms, being the food source for herbivores, being involved in the stabilization of reef networks, and in carbonate production. They are considered a vulnerable group to ocean acidification due to the potential dissolution of their high-Mg calcite skeleton at lower pH. Nevertheless, different species of coralline algae showed different responses to low-pH/high-pCO2 environment. Here, we studied the physiological response of Jania rubens to the pH condition predicted for the year 2100. We used a natural CO2 vent system as natural laboratory to transplant J. rubens from pH 8.1–7.5 for 3 weeks. Maximal PSII photochemical efficiency showed a significant reduction in transplanted thalli at low pH (7.5-T) compared to other conditions; consistent with that result, also the pigments involved in the light-harvesting spectrum of J. rubens (i.e., chlorophylls, carotenoids, and phycobilins), exhibited a significant decrease under water acidification, highlighting the strong sensitivity of this species to the environmental change. A major understanding of the response of coralline algae at high CO2 will go through the impact of OA on benthic ecosystems in the next future. This contribution is the written, peer-reviewed version of a paper presented at the Conference “Changes and Crises in the Mediterranean Sea” held at Accademia Nazionale dei Lincei in Rome on October 17, 2017.

Porzio L., Buia M. C., Lorenti M., Vitale E., Amitran C. & Arena C., in press. Ecophysiological response of Jania rubens (Corallinaceae) to ocean acidification. Rendiconti Lincei Scienze Fisiche e Naturali. Article (subscription required).

0 Responses to “Ecophysiological response of Jania rubens (Corallinaceae) to ocean acidification”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,113,504 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book