The capacity of oysters to regulate energy metabolism‐related processes may be key to their resilience against ocean acidification

Bivalve molluscs, such as oysters, are threatened by shifts in seawater chemistry resulting from climate change. However, a few species and populations within a species stand out for their capacity to cope with the impacts of climate change‐associated stressors. Understanding the intracellular basis of such differential responses can contribute to the development of strategies to minimise the pervasive effects of a changing ocean on marine organisms. In this study, we explored the intracellular responses to ocean acidification in two genetically distinct populations of Sydney rock oysters (Saccostrea glomerata). Selectively bred and wild type oysters exhibited markedly different mitochondrial integrities (mitochondrial membrane potential) and levels of reactive oxygen species (ROS) in their hemocytes under CO2 stress. Analysis of these cellular parameters after 4 and 15 days of exposure to elevated CO2 indicated that the onset of intracellular responses occurred earlier in the selectively bred oysters when compared to the wild type population. This may be due to an inherent capacity for increased intracellular energy production or adaptive energy reallocation in the selectively bred population. The differences observed in mitochondrial integrity and in ROS formation between oyster breeding lines reveal candidate biological processes that may underlie resilience or susceptibility to ocean acidification. Such processes can be targeted in breeding programs aiming to mitigate the impacts of climate change on threatened species.

Goncalves P., Anderson K., Raftos D. A. & Thompson E. L., 2018. The capacity of oysters to regulate energy metabolism‐related processes may be key to their resilience against ocean acidification. Aquaculture Research 49(5): 2059-2071. Article (subscription required).

 

0 Responses to “The capacity of oysters to regulate energy metabolism‐related processes may be key to their resilience against ocean acidification”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,123,766 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book