Fluctuating seawater pH/pCO2 regimes are more energetically expensive than static pH/pCO2 levels in the mussel Mytilus edulis

Ocean acidification (OA) studies typically use stable open-ocean pH or CO2 values. However, species living within dynamic coastal environments can naturally experience wide fluctuations in abiotic factors, suggesting their responses to stable pH conditions may not be reflective of either present or near-future conditions. Here we investigate the physiological responses of the mussel Mytilus edulis to variable seawater pH conditions over short- (6 h) and medium-term (2 weeks) exposures under both current and near-future OA scenarios. Mussel haemolymph pH closely mirrored that of seawater pH over short-term changes of 1 pH unit with acidosis or recovery accordingly, highlighting a limited capacity for acid–base regulation. After 2 weeks, mussels under variable pH conditions had significantly higher metabolic rates, antioxidant enzyme activities and lipid peroxidation than those exposed to static pH under both current and near-future OA scenarios. Static near-future pH conditions induced significant acid–base disturbances and lipid peroxidation compared with the static present-day conditions but did not affect the metabolic rate. These results clearly demonstrate that living in naturally variable environments is energetically more expensive than living in static seawater conditions, which has consequences for how we extrapolate future OA responses in coastal species.

Mangan S., Urbina M. A., Findlay H. S., Wilson R. W. & Lewis C., 2017. Fluctuating seawater pH/pCO2 regimes are more energetically expensive than static pH/pCO2 levels in the mussel Mytilus edulis. Proceedings of the Royal Society B 284: 20171642. doi: 10.1098/rspb.2017.1642. Article.

0 Responses to “Fluctuating seawater pH/pCO2 regimes are more energetically expensive than static pH/pCO2 levels in the mussel Mytilus edulis”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,041,154 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book