Skeletal dissolution kinetics and mechanical tests in response to morphology among coral genera

Ocean acidification is widely accepted as a primary threat to coral reef populations. Negative physiological effects include decreased calcification rates, heightened metabolic energy expenditure, and increased dissolution of coral skeletons. However, studies on the dissolution of coral skeletons structures under ocean acidification conditions and their implications on sediments remain scarce. In this work, we examined skeletal dissolution kinetics from four of the most representative hermatypic corals of the Eastern Pacific coasts (Pocillopora, Porites, Pavona, and Psammocora). Samples were treated with a highly acidic solution for defined periods of time, and measurements of dissolved calcium ([Ca+2]) were used to evaluate the kinetics of coral skeleton dissolution. All genera tests except Porites showed a zero reaction rate. Porites exhibited a first-order reaction and a faster reaction rate than other genera. Compression strength tests and skeletal density did not correlate with reaction rate. Pavona showed greater structural strength. Porites were the most susceptible to acidic dissolution compared to other genera tested due to their morphology, i.e., possession of the largest surface area, suggesting a high vulnerability under low-pH conditions. The hierarchical response in dissolution kinetics among coral genera tested suggests that the most soluble coral might act as a buffer under ocean acidification conditions.

Norzagaray-López O. C., Calderon-Aguilera L. E., Castro-Ceseña A. B., Hirata G. & Hernández-Ayón J. M., 2017. Skeletal dissolution kinetics and mechanical tests in response to morphology among coral genera. Facies 63:7. Article (subscription required).

0 Responses to “Skeletal dissolution kinetics and mechanical tests in response to morphology among coral genera”

  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,088,668 hits


Ocean acidification in the IPCC AR5 WG II

OUP book