Interactive effects of parasitic infection and ocean acidification on the calcification of a marine gastropod

The interactive effects of ocean acidification (OA) and parasitic infection have the potential to alter the performance of many marine organisms. Parasitic infection can affect host organisms’ response to abiotic stressors, and vice versa, while the response of marine organisms to stressors associated with OA can vary within and between taxonomic groups (host or parasite). Accordingly, it seems likely that the combination of infection stress and the novel stressors associated with OA could alter previously stable host–parasite interactions. This study is a detailed investigation into the changes to shell growth, dissolution, and tensile strength in the New Zealand mud snail Zeacumantus subcarinatus caused by trematode infection in combination with exposure to simulated OA conditions. This study also tests the effects of reduced pH on snails infected by 3 different trematode species to investigate potential species-specific effects of infection. After a 90 d exposure to 3 pH treatments (pH 8.1, 7.6, and 7.4), acidified seawater caused significant reductions in shell growth, length, and tensile strength in all snails. Trematode infected snails displayed increased shell growth and dissolution and reduced shell strength relative to uninfected conspecifics. In all measured variables, there were also significant differences between snails maintained at the same pH but infected by different species of parasite. These results indicate that parasitic infection has the potential to alter host organisms’ response to OA and that the magnitude of this effect varies among parasite species.

MacLeod C. D. & Poulin R., 2015. Interactive effects of parasitic infection and ocean acidification on the calcification of a marine gastropod. Marine Ecology Progress Series 537:137-150. Article (subscription required).

0 Responses to “Interactive effects of parasitic infection and ocean acidification on the calcification of a marine gastropod”

  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,427,371 hits


Ocean acidification in the IPCC AR5 WG II

OUP book