The role of gastropod shell composition and microstructure in resisting dissolution caused by ocean acidification

Highlights

• Two gastropods with different shell microstructure were exposed to low pH (six months).

• Micro-CT scans indicate decreased densities on exterior-most shell in both gastropods.

• Fibrous calcite layers experience more dissolution than homogeneous calcite layers.

• Microstructural crystal arrangement likely determines susceptibility to dissolution.

• Tegula funebralis shells are critically vulnerable to changes in ocean chemistry.

Abstract

Organisms, such as molluscs, that produce their hard parts from calcium carbonate are expected to show increased difficulties growing and maintaining their skeletons under ocean acidification (OA). Any loss of shell integrity increases vulnerability, as shells provide protection against predation, desiccation, and disease. Not all species show the same responses to OA, which may be due to the composition and microstructural arrangement of their shells. We explore the role of shell composition and microstructure in resisting dissolution caused by decreases in seawater pH using a combination of microCT scans, XRD analysis, and SEM imaging. Two gastropods with different shell compositions and microstructure, Tegula funebralis and Nucella ostrina, were exposed to simulated ocean acidification conditions for six months. Both species showed signs of dissolution on the exterior of their shells, but changes in density were significantly more pronounced in T. funebralis. XRD analysis indicated that the exterior layer of both shell types was made of calcite. T. funebralis may be more prone to dissolution because their outer fibrous calcite layer has more crystal edges and faces exposed, potentially increasing the surface area on which dissolution can occur. These results support a previous study where T. funebralis showed significant decreases in both shell growth and strength, but N. ostrina only showed slight reductions in shell strength, and unaffected growth. We suggest that microstructural arrangement of shell layers in molluscs, more so than their composition alone, is critical for determining the vulnerability of mollusc shells to OA.

Barclay K. M., Gingras M. K., Packer S. T. & Leighton L. R., in press. The role of gastropod shell composition and microstructure in resisting dissolution caused by ocean acidification. Marine Environmental Research. Article (subscription required).

0 Responses to “The role of gastropod shell composition and microstructure in resisting dissolution caused by ocean acidification”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,379,403 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book