A neural network-based analysis of the seasonal variability of surface total alkalinity on the East China Sea Shelf

Total alkalinity (AT) is an important variable in the regulation of the seawater carbonate chemistry system, determining the capacity to buffer changes in pH. In the coastal oceans, carbonate system dynamics are controlled by numerous processes such as land-derived inputs, biological activity, and coastal water dynamics, and seasonal alkalinity variations can play an important role in the regional carbon cycle. However, our understanding of these variations on the East China Sea (ECS) shelf remains poor due to limited observations. In order to estimate and investigate the seasonal variability of AT on the ECS shelf, an artificial neural network (ANN) model was developed using five cruise datasets from 2008 to 2018. The model used temperature, salinity, and dissolved oxygen to estimate AT with a root-mean-square error (RMSE) of ∼7 umol kg–1, and was applied to calculate AT for eight cruises during 2013–2016. In addition, monthly water column AT for the period 2000–2016 was obtained using temperature, salinity, and dissolved oxygen from the Changjiang Biology Finite-Volume Coastal Ocean Model (FVCOM) Data. Spatial distributions, seasonal cycles and correlations of surface AT indicated that the seasonal fluctuation of the Changjiang River discharge is the major factor affecting seasonal variation of surface AT on the ECS shelf. The largest seasonal fluctuations of surface AT were found on the inner shelf near the Changjiang Estuary, which is under the influence of the Changjiang River discharge.

Li X., Bellerby R. G. J., Wallhead P., Ge J., Liu J., Liu J. & Yang A., 2020. A neural network-based analysis of the seasonal variability of surface total alkalinity on the East China Sea Shelf. Frontiers in Marine Science 7: 219. doi: 10.3389/fmars.2020.00219. Article.

0 Responses to “A neural network-based analysis of the seasonal variability of surface total alkalinity on the East China Sea Shelf”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,399,848 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book

Archives