Freshening of the western Arctic negates anthropogenic carbon uptake potential

As human activities increase the atmospheric concentration of carbon dioxide (CO2), the oceans are known to absorb a significant portion. The Arctic Ocean has long been considered to have enormous potential to sequester anthropogenic CO2, and mitigate emissions. The frigid waters make CO2 more soluble, and as sea ice melts, greater surface area is exposed to absorb CO2. However, sparse data have made quantifying the amount of anthropogenic CO2 in the Arctic difficult, stimulating much debate over the basin’s contribution to CO2 sequestration from the atmosphere. Using three separate cruises in 1994, 2005, and 2015 in the Canada and Makarov basins, we analyze the decadal variability in anthropogenic CO2 uptake in the central western Arctic. Here we show, from direct carbon system measurements spanning two decades, that despite increased atmospheric CO2, total dissolved inorganic carbon has actually decreased, with minimal anthropogenic CO2 uptake. The reduction in dissolved CO2 results from a dilution of total alkalinity by increased freshwater supply, particularly river water. Changes in the freshwater budget of the western Arctic override its uptake potential, resulting in a weak sink, or possibly source of CO2.

Woosley R. J. & Millero F. J., in press. Freshening of the western Arctic negates anthropogenic carbon uptake potential. Limnology and Oceanography. Article (subscription required).


  • Reset

Subscribe

OA-ICC Highlights


%d bloggers like this: