The effects of low seawater pH on energy storage and heat shock protein 70 expression in a bivalve Limecola balthica

Highlights

• Seawater acidification affected gross biochemical composition of the bivalve Limecola balthica to a limited extent.
• Moderate hypercapnia (pH 7.0) induced elevated catabolism of carbohydrates including glycogen and lipids.
• Biochemical responses did not involve proteins suggesting that amino acids were not utilized as metabolic substrates.
• Clams demonstrated broad tolerance to reduced seawater pH presumably as pre-adaptation to CO2 variations in the environment.

Abstract

Though biological consequences of CCS (Carbon Capture and Storage) implementation into the marine environment have received substantial research attention, the impact of potential CO2 leakage on benthic infauna in the Baltic Sea remained poorly recognized. This study quantified medium-term (56-day laboratory exposure) effects of CO2-induced seawater acidification (pH 7.7, 7.0 and 6.3) on energetic reserves and heat-shock protein HSP70 expression of adult bivalve Limecola balthica from the southern Baltic. While no clear impact was evident in the most acidic treatment (pH 6.3), moderate seawater hypercapnia (pH 7.0) induced elevated catabolism of high caloric reserves (carbohydrates including glycogen and lipids) in order to provide energy to cover enhanced metabolic requirements for acid-base regulation. Biochemical response did not involve, however, breakdown of proteins, suggesting that they were not utilized as metabolic substrates. As indicated also by subtle variations in the chaperone protein HSP70, the clams demonstrated high CO2 tolerance, presumably through development of efficient defensive/compensatory mechanisms during their larval and/or ontogenic life stages.

Sokołowski A. & Brulińska D., in press. The effects of low seawater pH on energy storage and heat shock protein 70 expression in a bivalve Limecola balthica. Marine Environmental Research. Article (subscription required).

0 Responses to “The effects of low seawater pH on energy storage and heat shock protein 70 expression in a bivalve Limecola balthica”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,105,458 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book