Maximum thermal limits of coral reef damselfishes are size-dependent and resilient to near-future ocean acidification

Theoretical models predict that ocean acidification, caused by increased dissolved CO2, will reduce the maximum thermal limits of fishes, thereby increasing their vulnerability to rising ocean temperatures and transient heatwaves. Here, we test this prediction in three species of damselfishes on the Great Barrier Reef, Australia. Maximum thermal limits were quantified using critical thermal maxima (CTmax) tests following acclimation to either present-day or end-of-century levels of CO2 for coral reef environments (∼500 or ∼1,000 µatm, respectively). While species differed significantly in their thermal limits, whereby Dischistodus perspicillatus exhibited greater CTmax (37.88±0.03oC; N=47) than Dascyllus aruanus (37.68±0.02oC; N=85) and Acanthochromis polyacanthus (36.58±0.02oC; N=63), end-of-century CO2 had no effect (D. aruanus) or a slightly positive effect (increase in CTmax of 0.16oC in D. perspicillatus and 0.21oC in A. polyacanthus) on CTmax. Contrary to expectations, smaller individuals were equally as resilient to CO2 as larger conspecifics, and CTmax was higher at smaller body sizes in two species. These findings suggest that ocean acidification will not impair the maximum thermal limits of reef fishes, and they highlight the critical role of experimental biology in testing predictions of theoretical models forecasting the consequences of environmental change.

Clark T. D.Roche D. G., Binning S. A., Speers-Roesch B. & Sundin J., in press. Maximum thermal limits of coral reef damselfishes are size-dependent and resilient to near-future ocean acidification.

0 Responses to “Maximum thermal limits of coral reef damselfishes are size-dependent and resilient to near-future ocean acidification”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,040,049 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book