Plastic and evolved responses to global change: what can we learn from comparative transcriptomics?

Physiological plasticity and adaptive evolution may facilitate persistence in a changing environment. As a result, there is an interest in understanding species’ capacities for plastic and evolved responses, and the mechanisms by which these responses occur. Transcriptome sequencing has become a powerful tool for addressing these questions, providing insight into otherwise unobserved effects of changing conditions on organismal physiology and variation in these effects among individuals and populations. Here, we review recent studies using comparative transcriptomics to understand plastic and evolutionary responses to changing environments. We focus on 2 areas where transcriptomics has played an important role: first, in understanding the genetic basis for local adaptation to current gradients as a proxy for future adaptation, and second, in understanding organismal responses to multiple stressors. We find most studies examining multiple stressors have tested the effects of each stressor individually; the few studies testing multiple stressors simultaneously have found synergistic effects on gene expression that would not have been predicted from single stressor studies. We discuss the importance of robust experimental design to allow for a more sophisticated characterization of transcriptomic responses and conclude by offering recommendations for future research, including integrating genomics with transcriptomics, testing gene regulatory networks, and comparing the equivalence of transcription to translation and the effects of environmental stress on the proteome.

DeBiasse M. B. & Kelly M. W., 2016. Plastic and evolved responses to global change: what can we learn from comparative transcriptomics? Journal of Heredity 107(1):71-81. Article.

0 Responses to “Plastic and evolved responses to global change: what can we learn from comparative transcriptomics?”

  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Subscribe to the RSS feed

Follow AnneMarin on Twitter


Powered by FeedBurner

Blog Stats

  • 1,450,122 hits


Ocean acidification in the IPCC AR5 WG II

OUP book