Ocean acidification slows retinal function in a damselfish through interference with GABAA receptors

Vision is one of the most efficient senses used by animals to catch prey and avoid predators. Therefore, any deficiency in the visual system could have important consequences for individual performance. We examined the effect of CO2 levels projected to occur by the end of this century on retinal responses in a damselfish, by determining the threshold of its flicker electroretinogram (fERG). The maximal flicker frequency of the retina was reduced by continuous exposure to elevated CO2, potentially impairing the capacity of fish to react to fast events. This effect was rapidly counteracted by treatment with a GABA antagonist (gabazine), indicating that GABAA receptor function is disrupted by elevated CO2. In addition to demonstrating the effects of elevated CO2 on fast flicker fusion of marine fishes, our results show that the fish retina could be a model system to study the effects of high CO2 on neural processing.

Chung W.-S., Marshall N. J., Watson S.-A., Munday P. L. & Nilsson G. E., 2014. Ocean acidification slows retinal function in a damselfish through interference with GABAA receptors. Journal of Experimental Biology 217:323-326. Article (subscription required). 

0 Responses to “Ocean acidification slows retinal function in a damselfish through interference with GABAA receptors”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,442,165 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book

Archives