Dynamics of inorganic carbon and pH in a large subtropical continental shelf system: interaction between eutrophication, hypoxia, and ocean acidification

We examined the dynamics of dissolved inorganic carbon (DIC) and pH in the Pearl River Estuary (PRE) and the adjacent northern South China Sea (NSCS) shelf in summer, aiming for a better understanding of the interaction between eutrophication, hypoxia, and ocean acidification. Using a semi‐analytical diagnostic approach based on validated multiple end‐member water mass mixing models, we showed a −191 ± 54 μmol kg−1 deficit in DIC concentrations in an extensive surface plume bulge, corresponding to a significant pH increase of ∼ 0.57 ± 0.19 units relative to conservative mixing. In contrast, DIC additions in the bottom hypoxic zone reached ∼ 139 ± 21 μmol kg−1, accompanied by a decrease in pH of −0.30 ± 0.04 units. In combination with stable carbon isotopic compositions, we found biological production and CO2 outgassing to be responsible for DIC deficits in surface waters, while degradation of organic matter (OM) accounted for DIC additions in bottom waters. The PRE‐NSCS plume system as a whole served as a net source of atmospheric CO2 from the perspective of Lagrangian observations, because strong CO2 outgassing in the inner estuary overwhelmed the CO2 uptake in the plume despite strong phytoplankton blooms. Using a two‐layer box model, we further estimated that at least ∼ 45 ± 13% of eutrophication‐driven OM production in the surface plume accounted for 67 ± 18% of the DIC addition and oxygen consumption in bottom waters. Eutrophication also buffered ocean acidification in surface waters while hypoxia enhanced it in bottom waters, but their effects on acid‐base buffering capacity were secondary to the amplification of coastal ocean acidification caused by freshwater inputs.

Zhao Y., Liu J., Uthaipan K., Song X., Xu Y., He B., Liu H., Gan J. & Dai M., in press. Dynamics of inorganic carbon and pH in a large subtropical continental shelf system: interaction between eutrophication, hypoxia, and ocean acidification. Limnology and Oceanography. Article (subscription required).

0 Responses to “Dynamics of inorganic carbon and pH in a large subtropical continental shelf system: interaction between eutrophication, hypoxia, and ocean acidification”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,324,563 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book