High‐frequency CO2‐system variability over the winter‐to‐spring transition in a coastal plain estuary

Understanding the vulnerability of estuarine ecosystems to anthropogenic impacts requires a quantitative assessment of the dynamic drivers of change to the carbonate (CO2) system. Here we present new high‐frequency pH data from a moored sensor. These data are combined with discrete observations to create continuous time series of total inorganic carbon (TCO2), CO2 partial pressure (pCO2) and carbonate saturation state. We present two deployments over the winter‐to‐spring transition in the lower York River (where it meets the Chesapeake Bay mainstem) in 2016/17 and 2017/18. TCO2 budgets with daily resolution are constructed and contributions from circulation, air‐sea CO2 exchange, and biology are quantified. We find that TCO2 is most strongly influenced by circulation and biological processes; pCO2 and pH also respond strongly to changes in temperature. The system transitions from autotrophic to heterotrophic conditions multiple times during both deployments; the conventional view of a spring bloom and subsequent summer production followed by autumn and winter respiration may not apply to this region. Despite the dominance of respiration in winter and early spring, surface waters were undersaturated with respect to atmospheric CO2 for the majority of both deployments with mean fluxes ranging from ‐9 to ‐5 mmol C m‐2 d‐1. Deployments a year apart indicate that the seasonal transition in the CO2‐system differs significantly from one year to the next and highlights the necessity of sustained monitoring in dynamic nearshore environments.

Shadwick E. H., Friedrichs M. A. M., Najjar R. G., De Meo O. A., Friedman J. R., Da F. & Reay W. G., in press. High‐frequency CO2‐system variability over the winter‐to‐spring transition in a coastal plain estuary. Journal of Geophysical Research: Oceans. Article.

0 Responses to “High‐frequency CO2‐system variability over the winter‐to‐spring transition in a coastal plain estuary”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,306,888 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book