Exploring the interactions and implications between ocean acidification and eutrophication in Budd inlet

Ocean Acidification is one of the greatest symptoms that climate change has inflicted on marine environments. Oceans naturally absorb carbon dioxide, however anthropogenic CO2 has manifested greater adverse influences on marine life, which is stressing our ability to use these resources. Ocean pH has dropped 30% to 8.1 since the industrial age, however the pH reduction along coastlines and within estuaries has deteriorated even more, having a greater need to be monitored. Acidification is worse, especially around the Puget Sound because of high nutrient loads flowing into the Puget Sound from coastal communities, and other human industrial scale activities like agriculture. Nutrients, primarily in the form of nitrogen, increase algae and microbe primary productivity, eventually outputting new CO2 through biological processes, resulting in amplification of the effect greenhouse gases are already exerting on marine ecosystems. This thesis project explored this relationship by looking at water samples collected from five locations in Budd inlet, and were tested for pH, nitrate, alkalinity. These variables were collected with the goal of determining if there was a noticeable difference between sample locations, and if there was a correlation between these variables all in context to the city of Olympia and Capitol Lake having some influence on findings. Results found no clear statistically significant differences between each variables and sample sites, however pH and nitrate concentrations had the greatest correlation. This suggests nutrients are indeed contributing significantly towards furthering acidification, more so than can be determined by CO2 emissions levels alone. More research is warranted on establishing causal relationships between nutrient loads and acidification levels in all Puget Sound inlets.

Tyson West III S., 2019. Exploring the interactions and implications between ocean acidification and eutrophication in Budd inlet. MSc thesis, Evergreen State College, 72 p. Thesis.

  • Reset


OA-ICC Highlights

%d bloggers like this: