Absence of cellular damage in tropical newly hatched sharks (Chiloscyllium plagiosum) under ocean acidification conditions

Sharks have maintained a key role in marine food webs for 400 million years and across varying physicochemical contexts, suggesting plasticity to environmental change. In this study, we investigated the biochemical effects of ocean acidification (OA) levels predicted for 2100 (pCO2 ~ 900 μatm) on newly hatched tropical whitespotted bamboo sharks (Chiloscyllium plagiosum). Specifically, we measured lipid, protein, and DNA damage levels, as well as changes in the activity of antioxidant enzymes and non-enzymatic ROS scavengers in juvenile sharks exposed to elevated CO2 for 50 days following hatching. Moreover, we also assessed the secondary oxidative stress response, i.e., heat shock response and ubiquitin levels. Newly hatched sharks appear to cope with OA-related stress through a range of tissue-specific biochemical strategies, specifically through the action of antioxidant enzymatic compounds. Our findings suggest that ROS-scavenging molecules, rather than complex enzymatic proteins, provide an effective defense mechanism in dealing with OA-elicited ROS formation. We argue that sharks’ ancient antioxidant system, strongly based on non-enzymatic antioxidants (e.g., urea), may provide them with resilience towards OA, potentially beyond the tolerance of more recently evolved species, i.e., teleosts. Nevertheless, previous research has provided evidence of detrimental effects of OA (interacting with other climate-related stressors) on some aspects of shark biology. Moreover, given that long-term acclimation and adaptive potential to rapid environmental changes are yet experimentally unaccounted for, future research is warranted to accurately predict shark physiological performance under future ocean conditions.

Lopes A. R., Sampaio E., Santos C., Couto A., Pegado M. R., Diniz M., Munday P. L., Rummer J. L & Rosa R., in press. Absence of cellular damage in tropical newly hatched sharks (Chiloscyllium plagiosum) under ocean acidification conditions. Cell Stress and Chaperones. Article (subscription required).

 

0 Responses to “Absence of cellular damage in tropical newly hatched sharks (Chiloscyllium plagiosum) under ocean acidification conditions”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

w

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,096,079 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book