Evaluation of the ocean ecosystem: Climate change modelling with backstop technologies

This paper discusses the economic impacts of climate change, including those on ecosystems, and whether a new backstop technology should be used under conditions of strict temperature targets. Using the dynamic integrated climate-economy (DICE) model, we developed a new model to calculate the optimal path by considering new backstop technologies, such as CO2 capture and storage (CCS). We identify the effects of parameter changes based on the resulting differences in CO2 leakage and sites, and we analyse the feasibility of CCS. In addition, we focus on ocean acidification and consider the impact on economic activity. As a result, when CCS is assumed to carry a risk of CO2 leakage and acidification is considered to result in a decrease in utility, we find that CCS can only delay the effects of climate change, but its use is necessary to achieve strict targets, such as a 1.5 °C limit. This observation suggests that if the target temperature is too tight, we might end up employing a technology that sacrifices the ecosystem too greatly.

Tamaki T., Nozawa W. & Managi S., 2017. Evaluation of the ocean ecosystem: Climate change modelling with backstop technologies. Applied Energy 205:428–439. Article (subscription required).

0 Responses to “Evaluation of the ocean ecosystem: Climate change modelling with backstop technologies”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,030,807 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book