Response and adaptation to climate change in the South China Sea and Coral Sea

Over the past decades, climate change in the tropical western Pacific has led to surface warming, a distinct decrease in sea surface salinity, obvious sea level rise (SLR), and ocean acidification in the South China Sea (SCS) and Coral Sea (CS), which have had profound impacts on marine ecosystems and coastal communities. The aim of this study is to examine and compare the extent of marine climate change in these two areas, and to summarize possible adaptations in response to climate change. Our results indicate that a fast rise in sea surface temperature (SST) at a rate of more than 0.07 °C decade−1 and a decrease in sea surface salinity (SSS) at a rate of more than −0.09 g kg−1 decade−1 appeared in the SCS, which are greater than that in the CS, although SST changes also show a plateau consistent with the global warming hiatus since 2000. As a proxy for marine productivity, concentrations of chlorophyll-a apparently varied with the SSS and SST changes in the two areas. Our findings suggest that marine ecosystem functions have been greatly affected by climate change through changes in tropical evaporation and rainfall. Meanwhile, persistent SLR and ocean acidification pose serious threats to low-lying coastal areas, small islands, coral-dominated reef ecosystems, and related subsistence fisheries. The sustainable development of communities in low-lying coastal zones and small islands faces significant future challenge. Adaptation strategies for mitigating the effects of climate changes need to be developed and put forward.

Cai R., Guo X., Fu D., Yan X. & Tan H., 2017. Response and adaptation to climate change in the South China Sea and Coral Sea. In Leal Filho W. (Ed.), Climate Change Management: Climate Change Adaptation in Pacific Countries, pp. 163-176. Book chapter (subscription required).

  • Reset


OA-ICC Highlights

%d bloggers like this: