Highlights
- The SST controls the seasonal and spatial variation of CO2 fugacity and fluxes.
- The pH and fCO2 shows spatial variability associated with upwelling influence.
- NCT variation was mainly governed by biological activity and slightly affected by air-sea fluxes.
- During 2019, the Northeast Atlantic region behaved as an annual CO2 sink of -2.65 ± 0.44 Tg CO2 yr-1
- VOS lines are a powerful tool to study de CO2 system and fluxes in the coastal surface area.
Abstract
The seasonal and spatial variability of the CO2 system parameters and CO2 air-sea exchange were studied in the Northeast Atlantic Ocean between the northwest African coastal upwelling and the oligotrophic open-ocean waters of the North Atlantic subtropical gyre. Data was collected aboard a volunteer observing ship from February 2019 to February 2020. The seasonal and spatial variability of CO2 fugacity in seawater (fCO2,sw) was strongly driven by the seasonal temperature variation, which increased with latitude and was lower throughout the year in coastal regions where the upwelling and offshore transport was more intense. The thermal to biological effect ratio (T/B) was approximately 2, with minimum values along the African coastline related to higher biological activity in the upwelled waters. The fCO2,sw increased from winter to summer by 11.84 ± 0.28 μatm°C-1 on the inter-island routes and by 11.71 ± 0.25 μatm°C-1 along the northwest African continental shelf. The seasonality of total inorganic carbon normalized to constant salinity of 36.7 (NCT) was studied throughout the region. The effect of biological processes and calcification/dissolution on NCT between February and October represented >90% of the reduction of inorganic carbon while air-sea exchange described <6%. The seasonality of air-sea CO2 exchange was controlled by temperature. The surface waters of the entire region acted as a CO2 sink during the cold months and as a CO2 source during the warm months. The Canary basin acted as a net sink of -0.26 ± 0.04 molC m-2 yr-1. The northwest African continental shelf behaved as a stronger sink at -0.48 ± 0.09 molC m-2 yr-1. The calculated average CO2 flux for the entire area was -2.65 ± 0.44 TgCO2 yr-1 (-0.72 ± 0.12 TgC yr-1).
Curbelo-Hernández D., González-Dávila M., González A. G., González-Santana D. & Santana-Casiano J. M., in press. CO2 fluxes in the Northeast Atlantic Ocean based on measurements from a surface ocean observation platform. Science of The Total Environment. Article (subscription required).