Impact of climate change on the primary production and related biogeochemical cycles in the coastal and sea ice zone of the Southern Ocean

Highlights

• Changes in primary production in the Southern Ocean are analyzed in a comprehensive manner.

• General production increase is the sign of climate change in the Southern Ocean.

• Associated biogeochemical variables show regionally heterogenous signals of climate change.

• Sea ice affecting iron supply and stratification is a primary factor for CCSZ production change.

• Production change in SIZ is sensitive to change in iron supply arising from various mechanisms.

Abstract

Climate change in the Southern Hemisphere has exerted impact on the primary production in the Southern Ocean (SO). Using a recently released reanalysis dataset on global biogeochemistry, a comprehensive analysis was conducted on the complex biogeochemical seasonal cycle and the impact of climate change with a focus in areas within the meridional excursion of the sea ice boundary—coastal and continental shelf zone (CCSZ) and seasonal sea ice zone (SIZ). The seasonal cycles of primary production and related nutrients are closely linked with the seasonal changes in sea ice and sea surface temperatures. As sea ice retreats and allows energy and gas exchange across the sea surface, phytoplankton growth is initiated, consuming accumulated nutrients within the shallow depth of ~40 m. The seasonal evolutions of physical, biological and chemical variables show both spatial and temporal consistency with each other. Climate change has altered the timing and amplitude of the seasonal cycle. While primary production has generally increased along with an intensified uptake of CO2, some areas show a reduction in production (e.g., Prydz Bay, eastern Indian Ocean). In the CCSZ, increased iron utilization and light availability allowed production to be increased. However, the mechanism by which these factors are altered varies from one location to another, including changes in sea ice cover, surface stratification, and downwelling/upwelling. In the SIZ, where iron is generally a limiting factor, iron supply is a key driver of changes in primary production regardless of other nutrients. There is a clear influence of climatic change on the biogeochemical cycle although the signal is still weak.

Kim S.-U. & Kim K.-Y., in press. Impact of climate change on the primary production and related biogeochemical cycles in the coastal and sea ice zone of the Southern Ocean. Science of The Total Environment. Article.


Subscribe

Search

  • Reset

OA-ICC Highlights

Resources


Discover more from Ocean Acidification

Subscribe now to keep reading and get access to the full archive.

Continue reading