Development of an economical, autonomous pHstat system for culturing phytoplankton under steady state or dynamic conditions

Laboratory investigations of physiological processes in phytoplankton require precise control of experimental conditions. Chemostats customized to control and maintain stable pH levels (pHstats) are ideally suited for investigations of the effects of pH on phytoplankton physiology, for example in context of ocean acidification. Here we designed and constructed a simple, flexible pHstat system and demonstrated its operational capabilities under laboratory culture conditions. In particular, the system is useful for simulating natural cyclic pH variability within aquatic ecosystems, such as diel fluctuations that result from metabolic activity or tidal mixing in estuaries. The pHstat system operates in two modes: (1) static/set point pH, which maintains pH at a constant level, or (2) dynamic pH, which generates regular, sinusoidal pH fluctuations by systematically varying pH according to user-defined parameters. The pHstat is self-regulating through the use of interchangeable electronically controlled reagent or gas-mediated pH-modification manifolds, both of which feature flow regulation by solenoid valves. Although effective pH control was achieved using both liquid reagent additions and gas-mediated methods, the liquid manifold exhibited tighter control (± 0.03 pH units) of the desired pH than the gas manifold (± 0.10 pH units). The precise control provided by this pHstat system, as well as its operational flexibility will facilitate studies that examine responses by marine microbiota to fluctuations in pH in aquatic ecosystems.

Golda R. L., Golda M. D., Hayes J. A., Peterson T. D. & Needoba J. A., 2017. Development of an economical, autonomous pHstat system for culturing phytoplankton under steady state or dynamic conditions. Journal of Microbiological Methods 136:78–87. Article (subscription required).

0 Responses to “Development of an economical, autonomous pHstat system for culturing phytoplankton under steady state or dynamic conditions”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 994,168 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book