Impact of rapid sea-ice reduction in the Arctic Ocean on the rate of ocean acidification

The largest pH decline and widespread undersaturation with respect to aragonite in this century due to uptake of anthropogenic carbon dioxide in the Arctic Ocean have been projected. The reductions in pH and aragonite saturation state have been caused primarily by an increase in the concentration of atmospheric carbon dioxide. However, in a previous study, simulations with and without warming showed that these reductions in the Arctic Ocean also advances due to the melting of sea ice caused by global warming. Therefore, future projections of pH and aragonite saturation in the Arctic Ocean will be affected by how rapidly the reduction in sea ice occurs. In this study, the impact of sea-ice reduction rate on projected pH and aragonite saturation state in the Arctic surface waters was investigated. Reductions in pH and aragonite saturation were calculated from the outputs of two versions of an earth system model (ESM) with different sea-ice reduction rates under similar CO2 emission scenarios. The newer model version projects that Arctic summer ice-free condition will be achieved by the year 2040, and the older version predicts ice-free condition by 2090. The Arctic surface water was projected to be undersaturated with respect to aragonite in the annual mean when atmospheric CO2 concentration reached 480 (550) ppm in year 2040 (2048) in new (old) version. At an atmospheric CO2 concentration of 520 ppm, the maximum differences in pH and aragonite saturation state between the two versions were 0.08 and 0.15, respectively. The analysis showed that the decreases in pH and aragonite saturation state due to rapid sea-ice reduction were caused by increases in both CO2 uptake and freshwater input. Thus, the reductions in pH and aragonite saturation state in the Arctic surface waters are significantly affected by the difference in future projections for sea-ice reduction rate. The critical CO2 concentration, at which the Arctic surface waters become undersaturated with respect to aragonite on annual mean bias, would be lower by 70 ppm in the version with the rapid sea-ice reduction.

Yamamoto, A., Kawamiya, M., Ishida, A., Yamanaka, Y., and Watanabe, S.: Impact of rapid sea-ice reduction in the Arctic Ocean on the rate of ocean acidification, Biogeosciences Discussions, 8, 10617-10644, doi:10.5194/bgd-8-10617-2011, 2011. Article.


  • Reset

Subscribe

OA-ICC Highlights


%d bloggers like this: