Unraveling ecological signals from a global warming event of the past

This article has related content: Isotopic filtering reveals high sensitivity of planktic calcifiers to Paleocene–Eocene thermal maximum warming and acidification Brittany N. Hupp, D. Clay Kelly, John W. Williams

As we face the increasing threat of global warming and its associated effects, paleontologists and paleoclimatologists alike look to the geological record to investigate how rapid, natural global warming events of the past have impacted the Earth system. One of the most important archives for investigating climate change in the geological past is the marine sediment record (1). In the open oceans, sediment particles, organic matter, and the shells of marine microorganisms, are constantly raining down on the seafloor and accumulating as marine sediments (1). In the relative quiescence of the deep sea, these sediments can build up relatively undisturbed for millions of years (1). Analysis of the chemical signals in these sediments that are influenced by temperature has allowed for the reconstruction of changing global climates throughout the last 70 million years (2).

The first half of the Cenozoic (66 million years to 34 million years ago) was characterized by “hothouse” and “warmhouse” climates, when global temperatures were between 5 °C and 10 °C warmer than the present day (2), and atmospheric CO2 was estimated to be between 500 and 3,000 parts per million (3). Against this backdrop of an already warm world, between 56 million and 46 million years ago, there were a series of rapid global warming events called “hyperthermals” (2). These hyperthermal events are geologically brief, typically <200,000 y in duration, and associated with sharp negative carbon isotope excursions (2). The Paleocene–Eocene thermal maximum (PETM), which occurred ∼56 million years ago, was the largest of these events (2). It was first discovered in the early 1990s as a pronounced shift in the climate records of a deep-sea sediment core from the Southern Ocean (4). Since that time, the PETM has become the most studied Cenozoic hyperthermal, and, due to its potential analogy to anthropogenic climate change, it remains a key interval of Earth history for climatological research.

Aze T., 2022. Unraveling ecological signals from a global warming event of the past. PNAS 119(13): e2201495119. doi: 10.1073/pnas.2201495119. Article.

  • Reset


OA-ICC Highlights

%d bloggers like this: