Acidification and dissolution in marine sediments of bays

Besides sea level rise, climate change main consequences are ocean warming and its evil twin acidification. Ocean acidification has been identified as ‘a future global climate change impact concern’ because it has been slowly affecting entire ecosystems, and it is a threat to local economies, especially shellfish and fisheries productions. The scientific community has limited understanding of ocean acidification impacts, yet local and other researchers continue to monitor and evaluate them in many parts of the world. Marine bay environments are some of the richest and most biodiverse areas in the world. Ocean current circulation and upwelling of deep cold waters brings nutrient rich waters to the surface at certain times of the year, increasing productivity. Bays act as a carbon sink. Global oceans absorb twenty-five percent of our carbon dioxide emissions. So, when there is an excess of carbon dioxide emissions in the atmosphere, this excess is absorbed in seawater and marine sediment interstitial water, and a series of chemical reactions lowers pH increasing ocean acidity. These “ocean acidification” changes have serious implications for our coastal ecosystems, altering marine life behavior and development yet this question remains addressed. Increased acidity interferes with the process by which calcifying organisms such as crab, oysters, mussels, and certain plankton and benthic Foraminifera build their shells. Foraminifera are the base of the ocean food chain as first consumers in the ocean.

Eichler P. P. B. & Barker C. P., 2020. Acidification and dissolution in marine sediments of bays. Journal of Aquaculture & Marine Biology 9 (2): 44‒46. Article.

  • Reset


OA-ICC Highlights

%d bloggers like this: