Potential predictability of marine ecosystem drivers

Climate variations can have profound impacts on marine ecosystems and the socio-economic systems that may depend upon them. Temperature, pH, oxygen (O2) and net primary production (NPP) are commonly considered to be important marine ecosystem drivers, but the potential predictability of these drivers is largely unknown. Here, we use a comprehensive Earth system model within a perfect modelling framework to show that all four ecosystem drivers are potentially predictable on global scales and at the surface up to 3 years in advance. However, there are distinct regional differences in the potential predictability of these drivers. Maximum potential predictability (> 10 years) is found at the surface for temperature and O2 in the Southern Ocean and for temperature, O2 and pH in the North Atlantic. This is tied to ocean overturning structures with memory or inertia with enhanced predictability in winter. Additionally, these four drivers are highly potentially predictable in the Arctic Ocean at surface. In contrast, minimum predictability is simulated for NPP (< 1 years) in the Southern Ocean. Potential predictability for temperature, O2 and pH increases with depth to more than 10 years below the thermocline, except in the tropical Pacific and Indian Ocean, where predictability is also three to five years in the thermocline. This study indicating multi-year (at surface) and decadal (subsurface) potential predictability for multiple ecosystem drivers is intended as a foundation to foster broader community efforts in developing new predictions of marine ecosystem drivers.

Frölicher T. L., Ramseyer L., Raible C. C., Rodgers K. B. & Dunne J., 2019. Potential predictability of marine ecosystem drivers. Biogeosciences Discussions. Article.

0 Responses to “Potential predictability of marine ecosystem drivers”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,333,706 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book